

Chemical Equilibrium

Date Planned ://	Daily Tutorial Sheet	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-0	Exact Duration :

Very Short Answer Type (1 Mark)

- 1. What is K_C for the following equilibrium? $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g).$ When the equilibrium concentration of each substance is $[SO_2] = 0.60\,M$, $[O_2] = 0.82\,M$ and $[SO_3] = 1.90\,M$?
- 2. The equilibrium constant expression for a gas reaction is $K_c = \frac{[NH_3]^4 [O_2]^5}{[NO]^4 [H_2O]^6}$

Write the balanced chemical equation corresponding to this expression.

- **3.** State the characteristics of equilibrium in physical processes.
- **4.** Describe liquid-vapour equilibrium.
- **5.** Define homogeneous equilibrium?
- **6.** State the Le Chatelier's Principle?

Short Answer Type-I (2 Marks)

- 7. At a certain temperature and a total pressure of 10^5 Pa, iodine vapour contains 40% by volume of iodine atoms $[I_2(g) \Longrightarrow 2I(g)]$ Calculate K_p for the equilibrium.
- **8.** Find out the value of K_c for each of the following equilibria from the value of K_p

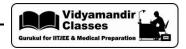
(a)
$$2 \text{ NOCl(g)} \rightleftharpoons 2 \text{ NO(g)} + \text{Cl}_2(g), K_p = 1.8 \times 10^{-2} \text{ at 500 K}$$

(b)
$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$
, $K_p=167$ at 1073 K

- **9.** Explain why pure liquids and solids can be ignored while writing the equilibrium constant expression.
- 10. A sample of HI(g) is placed in a flask at a pressure of 0.2 atm. At equilibrium, the partial pressure of HI(g) is 0.04 atm. What is K_p for the given equilibrium?
- **11.** What is the relation between the equilibrium constant of the forward reaction and the equilibrium constant of the reverse reaction?
- **12.** What is the relation between the activity of a gaseous component and its partial pressure?
- 13. In the reaction $PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$ $PCl_5, PCl_3 \text{ and } Cl_2 \text{ are at equilibrium at 500 K. The concentration of } PCl_3 \text{ and } Cl_2 \text{ is } 1.59 \text{ M.}$ $K_c = 1.79. \text{ Calculate the concentration of } PCl_5.$

Short Answer Type-II (3 Marks)

14. Reaction between nitrogen and oxygen takes place as follows:


$$2 N_2(g) + O_2(g) \rightleftharpoons 2 N_2O(g)$$

If a mixture of 0.482 mol of N_2 and 0.933 mol of O_2 is placed in a reaction vessel of volume 10L and allowed to form N_2O at a temperature for which $K_c = 2.0 \times 10^{-37}$. Determine the composition of the equilibrium mixture.

- A mixture of 1.57 mol of N_2 , 1.92 mol of H_2 and 8.13 mol of NH_3 is introduced into a 20 L reaction vessel at 500 K. At this temperature, the equilibrium constant, K_c for the reaction, $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$ is 1.7×10^2 . Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?
- **16.** Predict which of the following reaction will have appreciable concentration of reactants and products:
 - (a) $Cl_2(g) \rightleftharpoons 2Cl(g), K_c = 5 \times 10^{-39}$
 - (b) $Cl_2(g) + 2 NO(g) \rightleftharpoons 2 NOCl(g), K_c = 3.7 \times 10^8$
 - (c) $Cl_2(g) + 2NO_2(g) \rightleftharpoons 2NO_2Cl(g), K_c = 1.8$
- At 1,000 K in the reaction $CO_2(g) + C(s) \Longrightarrow 2CO(g)$ The value of $p_{CO_2} = 0.48$ bar and $p_{CO} = 0$ bar. Pure graphite is present. The equilibrium partial pressures of CO and CO_2 are 0.66 bar and 0.15 bar respectively. Calculate K_p of the reaction.
- 18. A mixture of 1.57 mol of N_2 , 1.92 mol of H_2 and 8.17 mol of NH_3 is introduced in a 20 L reaction vessel at 500 K. At this temperature, the equilibrium constant K_c for the reaction is 1.7×10^{-2} . Is the reaction at equilibrium? The reaction is $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
- 19. The value of K_C for the reaction $2A \rightleftharpoons B + C$ is 2×10^{-2} . At a given time the composition of the reaction mixture is $A = B = C = 3 \times 10^{-3}$ M. What will be the direction of the reaction?

Long Answer Type (5 Marks)

- **20.** Which of the following reactions will get affected by increasing the pressure? Also mention whether change will cause the reaction to go into forward or backward direction?
 - (i) $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$
- (ii) $CH_4(g) + 2 S_2(g) \rightleftharpoons CS_2(g) + 2 H_2S(g)$
- (iii) $2 \text{H}_2(g) + \text{CO}(g) \rightleftharpoons \text{CH}_3\text{OH}(g)$
- 21. Describe the effect of : (a) addition of $H_2(b)$ addition of $CH_3OH(c)$ removal of CO(d) removal of CH_3OH , on the equilibrium of the reaction : $2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$

22. At 473 K, equilibrium constant, Kc, for the decomposition of phosphorus pentachloride, PCl_5 is 8.3×10^{-3} . If decomposition is depicted as:

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g), \Delta_r H^\circ = 124.0 \text{ kJ mol}^{-1}$$

- (a) Write an expression for K_c for the reaction?
- **(b)** What is the value of K_C for the reverse reaction at the same temperature?
- (c) What would be the effect on K_c if (i) more PCl_5 is added (ii) pressure is increased (iii) temperature is increased?
- **23. (i)** List the applications of equilibrium constants.
 - (ii) Predict the extent of reaction when the value of equilibrium constant is very high.
- **24.** (i) What is the effect of adding a catalyst to a reversible reaction?
 - (ii) What is the effect of adding an inert gas to a reversible reaction?
 - (iii) How does temperature change affect a reversible reaction?
 - (iv) The equilibrium constant for a reaction is 2×10^{-23} at 25°C and 2×10^{-2} at 50°C. Is the reaction endothermic or exothermic?
- **25.** (i) Mention at least three ways by which the concentration of SO_3 can be increased in the following reaction in a state of equilibrium. $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g) + \text{heat}$
 - (ii) In a reaction $A + B \rightleftharpoons C + D$, what will happen to the equilibrium state if concentration of A is increased?